ذرات زیر اتمی پوزیترون, مزون, نوترینو, هیپرون ,کوارک ,میون, کائون, هادرون, باریون , لپتون, فوتون, گلوئون, بوزون,فرمیون, کوارکونیوم,... کوارک کوارک (به انگلیسی: Quark) یک ذره بنیادی و بخش اساسی سازندهٔ ماده است. کوارکها با هم ترکیب میشوند تا ذرات مرکبی به نام هادرون را به وجود آورند، پروتون و نوترون از معروفترین آنها هستند. مثلاً پروتون از دو کوارک بالا (Up quark) و یک کوارک پایین (Down quark) تشکیل شده است، در حالی که دو کوارک پایین و یک کوارک بالا، نوترون را می سازند. آنها تنها ذرات بنیادی برای آزمایش همه چهار برهم کنش اساسی یا نیروهای اساسی در مدل استاندارد میباشند. به خاطر پدیدهای که به تحدید رنگ معروف است، کوارکها هیچ گاه به صورت انفرادی یافت نمیشوند؛ آنها را فقط میتوان درون هادرون ها پیدا کرد. به همین دلیل بیشتر آنچه که ما درباره کوارکها میدانیم از مشاهده خود هاردون ها به دست آمدهاست. شش نوع مختلف از کوارکها وجود دارد که به طعم شهرت دارند : بالا up، پایین down، افسون charm، شگفت strange، سرtop یا حقیقت truthوته bottom یا زیباییbeauty . بالا و پایین دارای کمترین وزن در بین کوارکها میباشند. کوارکهای سنگین تر در طول یک فرآیند واپاشی به سرعت به کوارک های بالاو پایین تبدیل میشوند: تبدیل شدن از حالت جرم بیشتر به حالت جرم کمتر. به همین علت کوارکهای بالا و پایین عموما پایدار میباشند و رایجترین کوارکها در عالم میباشند، در حالی که کوارکهای دیگر فقط در تصادمهای با انرژی زیاد تولید میشوند (مثل تابش های کیهانی و شتاب دهندههای ذرات). کوارکها خواص ذاتی گوناگونی دارند که شامل بار الکتریکی، بار رنگ، اسپین و جرم میباشد. برای هر یک از طعمهای کوارک یک پادماده متناظر وجود دارد که به پادکوارک نیز شناخته میشوند و فقط در برخی خصوصیات دارای علامت مخالف میباشد. کوارکها تنها ذرات شناخته شده میباشند که بار الکتریکی آنها کسری از بار پایه میباشد. یک تفاوت بنیادی بین لپتون ها و کوارک ها این است که برخلاف لپتون ها، هیچ وقت در تجربیات آزمایشگاهی کوارک ها به صورت ذرات آزاد مشاهده نشده اند. این واقعیت که کوارک ها داخل پروتون وجود دارند، فقط بر اساس ایجاد برخورد میان پروتون و سایر ذرات پر انرژی که بتوانند به داخل آن نفوذ کنند، قابل بررسی است. در چنین آزمایش هایی که اعماق پروتون را می کاوند، می توان دید که کوارک ها به عنوان زیر ساختار پروتون وجود دارند. کوارک quark
ساختار کوارکی پروتون ترکیب: ذره بنیادی خانواده: فرمیون گروه: کوارک رده: ۱٬۲٬۳ برهمکنش: نیروی ضعیف٬نیروی قوی٬نیروی جاذبه٬نیروی الکترومغناطیس ذره بنیادی: آنتیکوارک (q) پاد ذره بنیادی: پاد پروتون استدلال: ماری گلمان (1964)جورج زویگ (1964) کشف شده: آزمایشگاه ملی شتابدهنده اسلاک (~1968) نماد: q تعداد انواع: )u, d, c, s, t، و b( بار الکتریکی: e3/2+,e3/1- بار رنگ: بله اسپین: 1⁄2 پوزیترون اولین نشانههای وجود پوزیترون یعنی ضدذره سبکی که تنها اختلاف آن با الکترون در علامت بار است در سال ۱۹۳۲ به کمک اتاقک ابر ویلسون به دست آمد. در اتاقک ابر ویلسون واقع در میدان مغناطیسی رد باریکی که به طور آشکار مربوط به یک ذره تک بار و خیلی سبک همانند الکترون بود، مشاهده شد که در جهتی متناظر با بار مثبت منحرف میشد. خواص پوزیترون و نحوه شناسایی بعدها ثابت شد که فرایند عمده برای تشکیل پوزیترون ها عبارتاند از پرتوزایی مصنوعی و اندرکنش پرتوهای گامای پرانرژی وابسته به آنها با هسته های اتم. یکی از این فرایندها را میتوان با قراردادن اتاقک ابر ویلسون در میدان و تاباندن باریکه نازک تابش بر آن بررسی کرد. در بعضی عکس ها در مسیر باریکه تابش گاما رد دوگانه خاصی دیده میشود. ذرات باردار متحرک در گاز با یونیدن اتم های گازدار انرژی از دست میدهد و در نتیجه پیوسته از سرعتش کاسته میشود. آزمون کامل این رد آشکار میکند که خمیدگی هر شاخه آن با افزایش فاصله از پیچیدگی رد تیز تر میشود. این پدیده به این معناست که ما با ردهایی از جفت ذره خارج شونده از یک نقطه سروکار داریم نه رد خم شده یک ذره. تنها با داوری از روی درجه یونش هر دو رد به رد الکترونها میمانند. این ردها که معرف جفت ذرات اخیر هستند در میدان مغناطیسی و در جهتهای مختلف خم شده اند. یعنی به ذرههایی باردار تعلق دارند. با استفاده از مواد پرتوزا به عنوان چشمههای غنی پوزیترون مطالعه جزئیات خواص این مواد ممکن شده است. به ویژه ثابت شده است که جرم پوزیترون دقیقا با جرم الکترون برابر یعنی حدود 2000/1 جرم پروتون است. انفعالات پوزیترونی نتایج اخیر ما را به این نتیجه منجر میکند که یکی از ذرهها الکترون و دیگری پوزیترون است. بنابراین کوانتومهای گاما که از درون ماده میگذرند (گاز در اتاقک ابر ویلسون) به جای ذره واحد جفت الکترون و پوزیترون تشکیل میدهند. این پدیده به تشکیل جفتهای الکترون و پوزیترون معروف شده است «پدیده تولید جفت). مباحث نظری نشان میدهد که در نتیجه اندرکنش کوانتوم با میدان الکتریکی هسته اتمی ماده این جفت تشکیل میشود در این فرایند کوانتوم با میدان الکتریکی هسته اتمی ماده، این جفت تشکیل میشود. در این فرایند کوانتوم به جفت الکترون و پوزیترون تبدیل میشود و هسته بدون تغییر باقی میماند. فرایند عکس تشکیل جفت الکترون و پوزیترون نیز کشف شده است معلوم شده است که با نزدیکترکردن الکترون و پوزیترون تا فاصلههای کوتاه بر اثر نیروهای جاذبه الکترومغناطیسی ممکن است دو کوانتوم تشکیل و در جهتهای مخالف از یکدیگر دور شوند. فرایند ترکیب الکترون و پوزیترون همراه با تبدیل آنها به کوانتومهای گاما را نابودی جفت نامیده اند. نابودی به دلیل نبود پوزیترون روی زمین انتخاب شده است. ناپایداری پوزیترون پس از زمان کوتاهی از تشکیل آن هر پوزیترون با یک الکترون محیط ترکیب میشود و به دو کوانتوم نور تبدیل میشوند. تشکیل جفتهای الکترون و پوزیترون از کوانتومهای و ترکیب الکترون ها با پوزیترونها که به تشکیل دو کوانتوم منجر میشود اساساً فرایند جدیدی است که در آن تبدیل متقابل تابش میدان الکترومغناطیسی فوتونهای گاما) و ذرات ماده الکترون و پوزیترون صورت میگیرد. کشف پوزیترون اثباتی بر خواص موجی ذرات: خواص ذرات از جنبههای زیادی با خواص میدان الکترومغناطیسی «نور) فرق دارد. عمدهترین اختلاف این است که همه اجسام پیرامون ما از ذرات ساخته شدهاند ممکن است به نظر رسد که فقط نور است که عمل انتقال انرژی از بعضی اجسام به بعضی دیگر را انجام میدهد به این دلیل حتی در آغاز قرن 20 بر این باور بودند که نور (میدان الکترومغناطیسی) و ماده را سد غیر قابل گذری از یکدیگر جدا کرده است. بعدا خواص ذرهای نور کشف شد معلوم شد که نور خواص شارش ذرات فوتونها را باخواص موجی همراه دارد از طرف دیگر خواص موجی که قبلاً فقط به نور اختصاص میدادند و یکی از خصایص متمایز آن میشمردند، در ذرات ماده نیزکشف شد این اکتشافات روی شکاف میان مفاهیم نور و ماده پل زد. مهمتر از این بعد از کشف تبدیلهای متقابل نور (کوانتوم های گاما) و ذرات ماده (جفت های الکترون و پوزیترون) روشن شد که ارتباط بسیار ریشه داری میان نور و ماده وجود دارد. ذرات ماده و فوتونها (میدان های الکترومغناطیسی) دو شکل مختلف ماده اند. فوتون خصایص مشترک زیادی با ذرات دیگر از خود به نمایش میگذارد ولی ویژگی مهمی دارد و آن این است که جرم در حال سکون «جرم سکون) آن برابر صفر است. فوتون همیشه با سرعت نور حرکت میکند هر گاه ناگزیر به توقف شود (نظیر موقع جذب) دیگر نوری وجود نخواهد داشت. چشمههای تولید پوزیترون پوزیترون را به تنهایی نمیتوان تولید کرد زیرا ذره ناپایداری است و به سرعت ناپدید میشود. عموماً پوزیترون را به کمک واکنشهای هستهای بنیادی و نیز به کمک پدیده تولید جفت که در آن به همراه الکترون از نابودی یک فوتون به دست میآورند. سیستم آشکارسازی پوزیترون نیز همانند نحوه تولیدش به لحاظ ناپایداری پوزیترون فرایند مستقلی نیست و بیشتر از طریق پدیده نابودی جفت به وجود پوزیترون پی میبرند. مزون مزون به معنی میانه توسط دانشمندی ژاپنی به نام هیدکی یوکاوا پیشنهاد گردید زیرا نیروی کولنی در هسته باید از کنار هم قرار گرفتن پروتون جلوگیری میکرد این نظریه اعلام میکند که در هسته و توسط نوترونها ذراتی به نام مزون وجود دارد و این نیرو که اکنون نیروی قوی نامیده میشود از واپاشی هسته جلوگیری میکند ابتدا نظر بر مزون مو بود(میون) که بعدها مشخص شد پیون است پیون ذرهای با اسپین صفر است که از هر طرف به آن نگاه کنیم به یک شکل به نظر میرسد مزونها اکنون دستهای از ذرات بنیادی را تشکیل میدهند که در تعریف چنین نامیده شده اند((ذراتی که دو کوارک سازندهای آن است)) انواع مزونها: مو مزون (M-Meson) جرم مو مزون تقریباً ۸/۱ جرم پروتون میباشد. مومزونها فقط میتوانند به صورت مثبت یا منفی باشند، مومزون خنثی وجود ندارد. این ذرات به نوبه خود ضد ذره هم دارند مثلاً ضد ذره مومزون منفی، مومزون مثبت میباشد. بواسطه وجود تأثیرات متقابل عمومی یک مومزون ممکن است به یک الکترون و دو نوترنیو تجزیه شود. مومزون منفی دارای نیم عمر ۲٫۳X۱۰-۶ ثانیه میباشد. بواسطه چنین تأثیر متقابل که بین سه ذره فوق (الکترون، مومزون و نوترینو) در حالت عادی وجود دارد آنها را لپتون (لپتون) نیز مینامند. پی مزون (P-Meson): جرم پی مزون تقریباً ۷/۱ جرم پروتون میباشد. پی مزونها بصورت مثبت یا منفی یا خنثی وجود دارند. این ذرات نیز به نوبه خود ضد ذره هم دارند مثلاً ضد ذره پی مزون مثبت ذره پی مزون منفی است. شبیه فوتون، پی مزون خنثی با ضد ذره خود یکسان است. پی مزون کوبورچه توسط دانشمند ژاپنی یوکاوا (Yukowa) در سال ۱۹۳۵ پیش بینی شده بود. ذرات هستهای بطور مداوم ذرات پی مزون را مبادله میکنند. این تبادل شباهتی به ظهور نیروهای الکتریکی دارد که در اثر نشر و جذب دائم کوانتای تابش الکترومغناطیسی بهوسیله یک بار الکتریکی حاصل میشود. پی مزونها میتوانند در برخورد پروتونهایی با انرژی چند صد میلیون الکترون ولت تولید شوند. در این حالت انرژی جنبشی ذرات هستهای مستقما به جرم سکون پی مزون تبدیل میشود. طرح کلی واکنشهای بین ذرات بنیادی پروتون + نوترون +پی مزون مثبت پروتون + پروتون پروتون +پروتون +پی مزون منفی پروتون + نوترون نوترون + پی مزون مثبت اشعه گاما + پروتون پروتون + پی مزون منفی اشعه گاما + نوترون کامزون (K-Meson) جرم کا مزون تقریباً ۴/۱ جرم پروتون میباشد. کامزونها بصورت منفی، مثبت و خنثی شناخته شدهاند. این ذرات به نوبه خود ضد ذره هم دارند مثلاً ضد ذره کامزون منفی، کامزون مثبت میباشد.در صورتیکه ضد ذره کامزون خنثی خودش میباشد. بواسطه جرم بزرگ کامزون این ذرات با تنوع بیشتری تجزیه میشود. دوره تجزیه یک کامزون باردار ۰٫۸۵X۱۰-۸ ثانیه میباشد. نوترینو نوترینو (به انگلیسی: neutrino) یک ذره بنیادی است که از نظر الکتریکی خنثی بوده و به ندرت وارد برهمکنش میشود. نوترینو به معنی «کوچک خنثی»، معمولاً با سرعتی نزدیک به سرعت نور حرکت میکند، از نظر الکتریکی خنثی بوده و قادر است از درون مواد تقریباً بدون هیچ برهم کنشی عبور نماید. نوترینوها دارای جرم بسیار کوچک، اما غیر صفر هستند. نوترینو با حرف یونانی (نو) نمایش داده میشود. از آنجایی که نوترینوها بار الکتریکی ندارند، تحت تاثیر نیروهای الکترومغناطیس قرار نمیگیرند. نوترینوها تنها تحت تاثیر نیروی هستهای ضعیف که در مقایسه دارای بُرد بسیار کوتاهتری از نیروی الکترومغناطیس است، قرار میگیرند. لذا قادر هستند مسافتهای بسیار طولانی را درون مواد بدون برهمکنش طی نمایند. نوترینوها در ضمن واپاشی بتا، در واکنشهای هستهای مانند آنچه در خورشید و یا راکتورهای اتمی رخ میدهند و هچنین در اثر برخورد پرتوهای کیهانی با اتمها ایجاد میگردند. سه نوع یا «طعم» نوترینو وجود دارد: نوترینوهای الکترون، نوترینوهای میون و نوترینوهای تاو. همچنین هر یک از آنها پادذره مربوط به خود بنام پادنوترینو دارند. بیشتر نوترینوهایی که از زمین عبور میکنند، از خورشید صادر میشوند. در هر ثانیه از هر سانتیمتر مربع زمین، در حدود ۶۵ میلیارد (۱۰۱۰×۶٫۵) نوترینوی خورشیدی عبور میکند.[۲] انرژی گم شده در تابش پرتو بتا و ایده وجود نوترینو هنگامی که جیمز چادویک تحقیقات خود را برروی پرتو بتا آغاز کرد، مصمم شد تا انرژی ذرات بتا را اندازه بگیرد. او از خود پرسید: آیا همگی آنها با یک میزان انرژی بیرون میآیند، یا انرژی آنها توزیع شده است؟ رادرفورد دیگر پژوهشگران کوشیده بودند تا به این پرسش پاسخ دهند، ولی نتایج گمراه کننده بود. چادویک به منظور اندازهگیری انرژی و اندازه حرکت الکترونهایی که از رادیوم خارج میشدند، آزمایشی طراحی کرد که در آن آهنربایی ذرات را از مسیر منحرف میکرد و با اندازهگیری میزان انحراف توانست اندازه حرکت را بدست آورد. وی از یک شمارشگر تخلیه الکتریکی شبیه شمارشگر گایگر استفاده کرد. اهمیت کشف چادویک این بود که نتایج آزمایشهای او نشان میدادند اصل پایستگی انرژی دیگر رعایت نمیشود. برهم کنش مربوطه چنین بود: اتم رادیواکتیو پیش از واپاشی و همان اتم بعد از واپاشی است.انرژی این الکترون میتواند از تقریباً صفر تا یک حداکثر معین باشد. انرژی کلی ، منجمله انرژی جرم سکون آن، باید با کل انرژی برابر باشد. چنانکه دیده شد نسبت انرژی به انرژی الکترون برخی اوقات بسیار بالا و گاهی پایین است و تقریباً هیچ بستگی ندارد. پس در معادله موازنه ایجاد نمیشود. آیا ذره غیر قابل دیدی منتشر میشود؟این آزمایشها به دلیل جنگ جهانی اول متوقف شد. پس از جنگ فردی به نام چارلز الیس به گروه رادرفورد پیوست. او و ویلیام وستر روشی برای بدست آوردن انرژیای که در گذار از به حاصل میشد، اندیشیدند. شگردشان این بود که بگذارند انرژی منتشر شده، استوانه بزرگی از سرب را که کاملاً عایق شده بود، گرم کرده و درجه حرارت سرب را با دستگاه حساس ترموکوپل که قادر است تغییرات کوچک دما را نشان دهد، اندازه بگیرند. نتیجه قطعیت داشت. هیچ عامل گرم کننده دیگری بیرون نمیآمد. این انرژی گمشده اثری از خود باقی نمیگذاشت و توضیحی وجود نداشت. مسئله انرژی گم شده در تابش پرتو بتا چنان شدت گرفت که در سال ۱۹۲۹ نیلز بور پیشنهاد کرد که شاید اصل پایستگی انرژی در حوزه هسته بکار نیاید.توضیح انرژی گمشده باید در انتظار ولفگانگ پائولی باقی میماند. او نمیتوانست عقیده بور مبنی بر فرو ریختن اصل پایستگی را بپذیرد و برای گذر از این تنگنا در سال ۱۹۳۰ وجود ذره جدیدی را پیشگویی کرد که از این برهم کنش بیرون میآید و از خود در کالریمتر الیس نه مسیری و نه حرارتی باقی میگذارد. این ذره بایستی بدون بار و برخوردار از قدرت نفوذ بالا باشد. بدینسان پائولی ذرهای را که انریکو فرمی بعدها نوترینو نام گذاشت، پیشگویی کرد. به این ترتیب، واکنش واپاشی بتا چنانکه در سال ۱۹۳۹ فرمی آن را به چاپ رسانید، چنین است: ۲۵ سال باید میگذشت تا نوترینو مستقیماً ردیابی شود. اما خیلی پیش از آن ایده وجود نوترینو به طورکلی به سبب استفاده از اصل پایستگی انرژی، غیر مستقیم پذیرفته شده بود.[۳] امروزه رابطه فوق را در واپاشی بتا (نوع −β) به شکل زیر میشناسیم که در آن یک نوترون () به یک پروتون ()، یک الکترون () و یک پادنوترینوی الکترونی () واپاشی میکند: پادنوترینوها اولین بار بواسطه برهم کنش آنها با پروتونها در یک مخزن ۲۰۰ لیتری آب در آزمایش کووان و رینز در سال ۱۹۵۶ شناسایی شدند. در این آزمایش فرض براین بود که در واپاشی بتا، پادنوترینوی الکترونی ()، با پروتون () وارد برهم کنش شده و باعث بوجود آمدن یک نوترون () و یک پوزیترون () (پادذره الکترون) میشوند: در این آزمایش چشمه نوترینوها راکتور هستهای نیرومندی بود که در آن نوترینوها در ضمن واپاشی بتا از شکافت اورانیوم، به میزان ۱۰۱۳×۵ نوترینو در هر ثانیه و در هر سانتیمتر مربع تولید میشدند.[۴] بعد از ماهها آزمایش، آنها در حدود سه نوترینو در هر ساعت را توسط آشکارسازهای خود که تعداد آنها ۱۱۰ عدد بود، شناسایی کردند. تاریخچه کشف نوترینو تاریخچه کشف نوترینو، بطور خلاصه بدین قرار است: در سال ۱۹۱۴ جیمز چادویک به مسئله ابهامآمیز مربوط به انرژی حرکتی ذراتی که از مواد رادیواکتیو صادر میشدند، برخورد کرد. در سال ۱۹۳۰ ایده نوترینو هنگامی بدنیا آمد که ولفگانگ پاولی چارهای برای حفظ اصل پایستگی انرژی در تولید ذرات بتا اندیشید. پاولی هنگامی که برای نخستین بار تئوری خود را عرضه داشت، نوترون هنوز کشف نشده بود! در سال ۱۹۳۲ چادویک موفق به کشف نوترون گردید و در سال ۱۹۳۳ کارل دیوید آندرسون اولین پادذره یعنی پوزیترون را کشف نمود. در سال ۱۹۵۶، ۲۵ سال پس از اینکه پاولی امکان وجود نوترینو را پیشنهاد کرده بود، و ۴۲ سال پس از اینکه ابهامات مربوط به پرتو بتا مطرح گردید، کلاید کووان و فردریک رینز رسماً اعلام کردند که وجود نوترینو بالاخره به اثبات رسید. در سال ۱۹۶۲ دومین نوع نوترینو یعنی نوترینوهای میون کشف گردیدند. در سال ۱۹۶۸ برونو پونتهکورو و ولادیمیر گیربف در پی ابهامات بوجود آمده در اندازهگیری تعداد نوترینوهای خورشیدی عبوری از زمین، بیان نمودند که اگر نوترینوها دارای جرم غیر صفر باشند آنگاه میتوانند از یک نوع به نوع دیگر تغییر نمایند.[۵] بنابراین نوترینوهای خورشیدی گمشده، میتوانند نوترینوهای الکترونی باشند که در طول مسیر خود به سوی زمین به نوعی دیگر تغییر یافتهاند و از دید آشکارسازها پنهان میمانند. تا پیش از این عقیده عمومی بر این رایج بود که نوترینوها دارای جرم صفر هستند. در سال ۱۹۷۸ نیاز به وجود نوع سوم آن بنام نوترینوهای تاو اعلام شد. ولی تا ۱۹۹۸، یعنی تا ۲۰ سال پس از آن، مشاهده آن هنوز امکانپذیر نشده بود. در سال ۱۹۹۸ تیم تحقیقاتی سوپر کامیوکانده خبر از قرائن و شواهدی درباره نوترینوهایی بدون جرم صفر دادند.[۶] در سال ۲۰۱۰ تیم تحقیقاتی INFN در گرنساسو ایتالیا، که بر روی آشکارساز اپرا کار می کنند، مشاهده کردند که تعدادی از نوترینوهایی که از سرن گسیل شدند و از نوع نوترینوی میونی بودند، در طول سفر از لابراتوارهای سرن واقع در ژنو با عبور از تونلی به طول ۷۳۰ کیلومتر، به نوترینوهای تاو تبدیل شدند (نوسان کردند و تغییر طعم دادند). نتایج این نوسان اثبات کرد که حداقل یکی از این سه نوع نوترینو میتواند جرم داشته باشد.[۷] در سال ۲۰۱۱ تیم تحقیقاتی آشکارساز اپرا اعلام نمودند که مشاهدات آنها نشان میدهد که سرعت نوترینوها از سرعت نور نیز فراتر میروند. با این وجود، تیم تحقیقاتی سرن در یافته خود محتاط هستند و آن را به بوته آزمایش دیگر دانشمندان گذاشتهاند. پادنوترینو پادنوترینو پادذره نوترینو است که در واپاشی بتا ایجاد شده و از نظر بار الکتریکی خنثی است. مشاهدات مربوط به نوسان نوترینو نشان داده است که پادنوترینوها دارای جرم هستند.از آنجایی که نوترینوها و پادنوترینوها ذرات خنثی هستند، این امکان وجود دارد که هردوی آنها در واقع یک ذره باشند. ذراتی که دارای چنین مشخصهای هستند، به عنوان ذرات مایورانا شناخته میشوند. اگر نوترینوها ذرات مایورانا باشند آنگاه واپاشی بتای دوتایی بدون نوترینو امکانپذیر خواهد بود. سرعت نوترینو پپش از ظهور ایده نوسان نوترینو (تغییر طعم)، عموماً سرعت نوترینو برابر سرعت نور درنظر گرفته میشد.موضوع سرعت نوترینو بستگی مستقیم به جرم آن دارد. براساس قانون نسبیت خاص اگر نوترینوها بدون جرم هستند آنگاه باید با سرعت نور حرکت نمایند و درصورتی که دارای جرم باشند، دیگر نمیتوانند به سرعت نور برسند. در تاریخ ۲۳ سپتامبر ۲۰۱۱ (۱ مهر ۱۳۹۰)، تیم تحقیقاتی آشکارساز اپرا اعلام نمودند که مشاهدات آنها نشان میدهد که سرعت نوترینوها از سرعت نور نیز فراتر میروند. مشاهدات انجام شده در گرنساسو ایتالیا، بر روی ۱۵۰۰۰ نوترینو گسیل شده از سرن واقع در ژنو پس از عبور از تونلی به طول ۷۳۰ کیلومتر، بیانگر این است که سرعت نوترینوها در این آزمایش ۰٫۰۰۲٪ (۲۰ واحد در میلیون) بالاتر از سرعت نور بوده است. با این وجود، تیم تحقیقاتی سرن در یافته خود محتاط هستند و آن را به بوته آزمایش دیگر دانشمندان گذاشتهاند.[۸] تا به امروز علم فیزیک مدرن خصوصاً پس از تئوری نسبیت خاص آلبرت انیشتین، سرعتی بالاتر از سرعت نور را نمیشناخت. به این ترتیب، اگر یافته جدید محققان سرن تایید شود، فرضیه نسبیت اینشتین و در نتیجه، نگرش بشر امروز نسبت به جهان هستی و رفتار پدیدههای کیهانی به گونهای اساسی دگرگون خواهد شد. به گفته پژوهشگران، حتی با منظور کردن ضریب خطا در این آزمایش، فزونی سرعت حرکت این ذرات از سرعت نور قابل قبول بوده است. آنان گفتهاند که با توجه به اهمیتی که چنین کشفی داشته، مدتی را به بررسی آن پرداختند تا اطمینان حاصل کنند در جریان انجام آزمایش و اندازهگیری نتیجه آن، اشتباهی روی نداده است. چند سال پیش، آزمایشگاه فرمیلب در شیکاگو نیز به کشف مشابهی دست یافت اما به دلیل خطای قابل ملاحظهای که در اندازهگیری وجود داشت، آن را معتبر ندانست. پژوهشگران سرن، ضمن ابراز تعجب از چنین کشفی، وعده دادهاند که به زودی جزئیات بیشتری را در این زمینه منتشر کنند تا سایر فیزیکدانان نیز بتوانند به تکرار آزمایش و بررسی مستقل این پدیده بپردازند. ارزیابی شتابزده پژوهشگران سرن ارزیابی شتابزده پژوهشگران مرکز تحقیقاتی سرن، پیش از این که باعث تغییر قوانین فیزیک شود، باعث جدیتر شدن نظارت بر تجهیزات خواهد شد، چرا که سخن از خطای انسانی در نتیجهگیری عجیب آنها به میان آمده و به نظر میرسد نوترینوهای مورد نظر آنان سرعتی بیشتز از نور نداشته اند. براساس قانون نسبیّت خاص اگر نوترینوها (نیت ری نوز) بدون جرم هستند باید با سرعت نور حرکت نمایند و درصورتی که دارای جرم باشند (دارای جرم بسیار کوچک، اما غیر صفر هستند)، دیگر نمیتوانند به سرعت نور برسند. گویا مشکلات در آزمایش به استفاده از سامانهٔ موقعیتیاب جهانی جیپیاس ([۹] برای همزمان کردن ساعتهای اتمی هر دو سوی این مسیر برمیگشت. گذر زمان در ساعتها بین رسیدن سیگنال سنکرونکننده باید در نظر گرفته میشد و احتمالا این کار به درستی انجام نشده و چه بسا یک اتصال مشکلدار بین سیگنال جیپیاس و ساعت اصلی وجود داشته است. خطا در نوسانسازی که برای اعمال برچسبهای زمانی برای سنکرون کردن جیپیاس (وصل دو شبکه کاملاً مجزا به طریقی که هیچ نوع شدت جریان ضربه ای قابل ملاحظه ای ایجاد نشود) به کار رفته، میتواند منجر به اشتباه در برآورد زمان سفر نوترینوها و اضافهتر محاسبه شدن این زمان شده باشد. [۱۰] همزمان کردن ساعت ها به دلیل اثرات نسبیت خاص و عام هم میتواند به خطایی از مرتبه ی چند ده نانو ثانیه منجر بشود که به اشتباه به سرعت بیش از سرعت نور تعبیر شده است. [۱۱] جرم نوترینو در مدل استاندارد ذرات بنیادی فرض شده که نوترینوها بدون جرم هستند و این موضوع عقیده رایج تا دهه هفتاد میلادی بود.در سال ۱۹۹۸ نتایج تحقیقات در آشکارساز نوترینوی سوپر کامیوکانده مشخص نمود که نوترینوها میتوانند از یک طعم به طعم دیگر نوسان نمایند، این موضوع مستلزم آن است که آنها باید جرم غیر صفر داشته باشند.[۱۲] این ایده اولین بار در سال ۱۹۶۸ توسط پونتهکورو در پی ابهامات بوجود آمده در اندازهگیری تعداد نوترینوهای خورشیدی عبوری از زمین، مطرح شد. در سال ۲۰۱۰ آشکارساز اپرا تغییر طعم نوترینوهای میونی به نوترینوهای تاو را ثبت نمود. برخی آمار و ارقام خورشید در هر ثانیه ۱۰۳۸×۲ نوترینو از خود صادر میکند. در هر ثانیه از هر سانتیمتر مربع زمین، در حدود ۶۵ میلیارد (۱۰۱۰×۶٫۵) نوترینوی خورشیدی عبور میکند. اما این باران بسیار عظیم از دید انسانها پوشیده است! بدن ما در حدود ۲۰ میلیگرم پتاسیم ۴۰ دارد که تولید اشعه رادیواکتیو بتا مینماید. در نتیجه ما بدون اینکه خود بدانیم، روزانه در حدود ۳۴۰ میلیون نوترینو صادر میکنیم. به این ترتیب آنها با سرعت نزدیک به سرعت نور از ما خارج میشوند و تا پایان جهان به سفر خود ادامه میدهند. تخمین زده میشود که در حدود ۳۳۰ نوترینو در هر سانتیمتر مکعب از کائنات وجود دارد، به عبارتی ۳۳۰ میلیون در هر متر مکعب. این عدد بسیار بزرگی است. جهت مقایسه، بطور متوسط نیم پروتون در هر متر مکعب از کائنات وجود دارد. به این ترتیب تعداد نوترینوها نزدیک به یک میلیارد برابر تعداد پروتونها است. لذا در این کائنات آنچه که ما به عنوان ماده (پروتون، نوترون و الکترون) میشناسیم شاید از نظر کمیت خیلی مهم نباشند. تعداد نوترینوها در هر سانتیمتر مکعب از کیهان: -۳۳۰ نوترینو، مربوط به مهبانگ -۰٫۰۰۰۲ نوترینو، مربوط به ابرنواخترها (سوپرنواها) -۰٫۰۰۰۰۰۶ نوترینو، مربوط به ستارگان هیپرون هیپرونها (Hyperons) گروهی از ذرات بنیادی متعلق به ردهٔ باریونها هستند، که جرمشان از جرم نوترون بیشتر ولی طول عمرشان بسیار کوتاه است. تمام باریونهایی که نوکلئون نیستند هیپرون نام دارند. ولی چون همه هیپرونها به نوکلئونها واپاشیده میشوند، میتوان آنها را همچون نوکلئونهای برانگیخته فرض کرد. برای هر هیپرون یک پادذره وجود دارد. اساسا چهار دسته هیپرون وجود دارد که عبارتند از: هیپرون لاندا هیپرون سیگما هیپرون کسی هیپرون امگا میون میون (Muon)، ذره بنیادی با جرم ۲۰۷ برابر جرم الکترون؛ به شکل باردار مثبت و منفی وجود دارد. در آغاز به صورت یک مزون رده بندی شده بود. چون اسپین این ذرات است، اکنون در دسته لپتونها طبقه بندی میشوند. کائون در فیزیک ذرات بنیادی کائون (که به نام مزون کا هم شناخته میشود) به مزونهایی اطلاق میشود که از یک کوارک شگفت (یا پاد آن) و یک کوارک دیگر تشکیل شدهباشد. مشخصات پایه کائونها چهار دسته هستند: 1. K− (تشکیل شده از یک کوارک شگفت و یک پاد کوارک بالا) جرمش: 493.667±0.013 الکترونولت و نیمه عمرش :(1.2384±0.0024)×10−8 ثانیه. 2. پاد ذره, K+ (تشکیل شده از یک کوارک بالا و یک پاد کوارک شگفت)نیمه عمرش: K−. جرمش: 0.032±0.090 MeV, consistent with zero. The difference in نیمه عمرش: (0.11±0.09)×10−8 ثانیه. 3. The K0 (تشکیل شدهاست از پاد کوارک شگفتو کوارک پایین) جرمش: 497.648±0.022 MeV. It has mean squared charge radius of −0.076±0.018 fm2. 4. پاد ذره (تشکیل شدهاست از کوارک شگفت و پاد کوارک پایین) وهمان جرم را دارد. واپاشی اصلیK+ عبارت است از: 1. (leptonic, branching ratio BR = (63.43±0.17)%); 2. (hadronic, BR = (21.13±0.14)%); 3. (hadronic, BR = (5.576±0.031)%); 4. (hadronic, BR = (1.73±0.04)%); 5. (semileptonic, BR = (4.87±0.06)%) هادرون در فیزیک ذرات ، هادرون (گرفته شده از زبان یونانی به معنای محکم، سخت) عبارتست از وضعیت محدود کوارکها. هادرون ها به اتفاق یکدیگر یک نیروی قوی ایجاد مینمایند که همچون عملکرد اتمها با هم در اثر نیروی الکترومغناطیسی است. دو زیرمجموعه از هادرون ها وجود دارد: باریونها و مزونها. از میان معروفترین باریون ها، میتوان به پروتونها و نوترونها اشاره کرد. مقدمه طبق الگوی کوارک ، خصوصیات هادرونها مقدم تا از طریق به اصطلاح کوارکهای ظرفیت تعیین میگردد. مثلا، پروتون از دو کوارک بالا (هر کدام دارای بار الکتریکی ۳/۲+) و یک کوارک پایین (واجد بار الکتریکی ۳/۱-) تشکیل میشود. با افزودن این بارها به هم، بار پروتونی برابر با ۱+ حاصل میشود. اگرچه کوارکهای مرکب نیز حامل بار رنگ (بی ارتباط با رنگ ظاهری) اند، ویژگی نیروی قوی هستهای که تحدید رنگ نامیده میشود مستلزم آن است که هر وضعیت ترکیبی حامل بار ته نشست رنگ نباشد. یعنی، هادرون ها باید بیرنگ باشند. دو روش برای تحقق این امر وجود دارد: سه کوارک با رنگهای متفاوت، یک کوارک تک رنگ و یک پاد کوارک حامل عامل پاد رنگ. هادرونهای مبتنی بر الگوی اول ابرونها هستند در حالی که هادرونهای نوع اخیر مزونها نامیده میشوند. هم چون کلیه ذرات فرواتمی، برای هادرونها نیز اعداد کوانتومی تعیین میشود که به بازنمودهای گروه پوآنکاره مربوط میگردد: (m) pc J که در آن J عدد کوانتومی اسپین، p زوجیت ذاتی ذره، و c هم یوغی بار یا زوجیت نوع c و گشتاور چهارگانه ذره m (یعنی جرم آن) هستند. توجه کنید که جرم هادرون بسیار کوچک بوده و به جرم کوارکهای ظرفیت آن بستگی دارد و نیز در اثر معادل جرم- انرژی، بخش اعظم جرم از مقدار فراوان انرژی مرتبط با نیروی قوی هستهای حاصل میشود. هادرونها نیز میتوانند حامل اعداد کوانتوم دارای تعامل ضعیف همچون ایزواسپین (یا زوجیت نوع- G)، و شگرفی باشند. تمام کوارکها یک عدد کوانتومی افزایشی و ابقا شده به نام عدد باریون (B) دارند که معادل ۳/۱+ برای خود کوارکها و مقدار ۳/۱- برای پاد کوارکها است. این یعنی آن که باریونها- گروههای سه کوارکی- عدد باریونی ۱ = B دارند در حالی که مزونها دارای عدد باریونی ۰ = B اند. هادرونها وضعیتهای تحریک شدهای تحت عنوان ارتعاشات دارند. هر هادرون در وضعیت عادی میتواند وضعیتهای تحریک شده مختلفی داشته باشد؛ طی آزمایشهای فیزیک ذرات صدها نوع ارتعاش برای آنها مشاهده شدهاست. ارتعاشات بسیار سریع (طی حدود ۲۴- ۱۰ ثانیه) در اثر نیروی قوی هستهای تخریب میشوند. در فازهای دیگر ماده پویافام کوانتوم QCD، هادرونها از بین میروند. مثلا، در دما و فشار بسیار زیاد، در صورت وجود اعداد تعاملی ضعیف در کوارکها، نظریه پویافامی کوانتوم (QCD) پیش بینی میکند که کوارکها و گلوؤنها بطور ضعیف با هم تعامل نموده و دیگر درون هادرونها محدود نخواهند شد. این خصوصیت به عنوان آزادی مجانبی شناخته میشود که به لحاظ آزمایشگاهی در مقیاسهای انرژی بین یک گیگا الکترون ولت (Gev) و یک ترا الکترون ولت (Tev) [۲] مورد تایید قرار گرفتهاست. باریون در فیزیک ماده، باریونها گروهی است از ماده که شامل اجزای اتم ( پروتون و نوترون) هم میباشد. این گروه از ماده، سنگین تر از دیگر گروههاست. ریشه واژه باریون به باریس که در یونانی به معنی سنگین است برمیگردد. ترکیبات سه کوآرک u، d یا s با مجموع اسپین 2/3 تشکیل یک دیکوپلت باریون میدهند. هشتگانه (اُکتِت) اسپین سبک باریونهای 2/1. لپتون لپتونهای متنوعی کشف شدهاند که آنها براساس خواص فیزیکی و کوانتومی ویژه خود (جرم ، بار ، اسپین و غیره) به صورت زیر تقسیم بندی می شوند: لپتون های الکترون (e): اینها به نوبه خود دو دسته اند: الکترون ها نوترینوی الکترون لپتون های موئون: اینها نیز به نوبه خود دو دسته اند: موئون نوترینو موئون لپتون های تو (T): اینها نیز دو دسته اند: لپتون های تو منفی نوترینو تو فوتون در فیزیک فوتون به عنوان یه ذره بنیادی میباشد که بعنوان واحد کوانتومی نور ویا هرنوع تابش الکترومغناطیسی محسوب میشودو نماینده حاملان نیرو برای نیروی الکترو مغناطیسی میباشد که اثر این نیرو به راحتی هم در سطح ماکروسکپی وهم در سطح میکروسکپیک قابل مشاهده است. مانند بقیه ذرات بنیادی بهترین تعریف از فوتون توسط مکانیک کوانتومی ارایه میشود. که نشان دهنده ویژگی دوگانگی ذره وموج میباشد تعریف مدرن ازخصوصیات فوتون اولین بار توسط البرت انیشتین ارایه شدکه علت ان توضیح مشاهدات تجربی بود که ان زمان با فیزیک کلاسیک که نور را فقط موج میدانست قابل توضیح نبود از طرفی در توضیح پدیده جسم سیاه توسط ماکس پلانگ او مدلی نیمه کلاسیکی ارایه کرد که در ان با اینکه نور به عنوان موج توسط روابط ماکسول تعریف می شدولی برای مقدار انرژی مقدار های کوانتیده ای در نظر گرفته میشد که این مقدار ها برابر کوانتوم های انرژی فوتون ها بودند که خود این مدل نیمه کلاسیک بعدا پایه های اولیه مکانیک کوانتومی را بنا نهاد بر اساس اصل دوبروی در مورد ذرات دو حالت ذرهای و موجی در نظر گرفته میشود، که البته این خاصیت در دنیای میکروسکوپی بیشتر مورد مطالعهاست. به عنوان مثال، اگر ذرهای به جرم یک گرم که با سرعت معمولی در حال حرکت است، در نظر بگیریم طول موج منتسب به این ذره چنان کوچک خواهد بود که اصلاً قابل ملاحظه نیست، اما در مورد ذراتی مانند الکترون این طول موج قابل توجهاست. بنابراین با توسل به این اصل میتوان تابش الکترومغناطیسی را نیز متشکل از ذراتی دانست که این ذرات را فوتون میگویند. فوتون دارای اسپین یک است، یعنی از لحاظ ذرهای بوزون به حساب میآید. واقعیت کوانتومهای نور بسته موجی نظریه پلانک در ارتباط با بستههای انرژی تابشی تا اندازهای مبهم بود و فقط به عنوان مبنایی برای توزیع آماری انرژی میان طول موجهای مختلف در طیف الکترومغناطیسی بکار میرفت. پنج سال بعد از پلانک، آلبرت اینشتین توانست این مفهوم را به صورت مشخصتری بیان کند. انیشتین مفهوم کوانتومی نور را برای توجیه اثر فوتوالکتریک بکار برد. بر این اساس فوتونها که دارای انرژی معینی هستند، بعد از برخورد با الکترونهای اتم، انرژی خود را به آنها داده و خود از بین میرود. این امر میتواند به عنوان یک مسئله برخورد میان دو ذره با استفاده از نظریه برخورد توضیح داده شود. بعد از برخورد، فوتون از بین میرود و الکترون با انرژیی که از فوتون میگیرد، از ماده جدا میشود و سبب ایجاد یک جریان فوتوالکترونی در مدار خارجی میگردد. مقدار جریان در مدار خارجی بسته به تعداد فوتونهایی که بر سطح ماده موجود در کاتد تابیده میشود، متفاوت خواهد بود. ویژگی های فیزیکی فوتون فتون ذره ای بدون بار وبدون جرم وپایدار میباشد که دارای دو نوع پولاریزه ممکن با سه پارامتر پیوسته است که مولفه های بردار موج ان میباشند و طول موج ومسیر انتشار فوتون را مشخص میکنند فوتون از دیدگاه الکترو مغناطیسی بوزون محسوب میشودو بقیه اعداد کوانتومی ان مانند عدد لبتونی وباریونی ورنگ و.. صفر میباشد فوتون تقریبا از هر فرایند طبیعی ساطع میشود مانند زمانی که باری شتاب بگیرد یا مولوک یا اتمی به ترازی پایین تر سقوط کند در فضای خلا فوتون با سرعت c یا همان سرعت نور حرکت میکند وبرای انرژی ان رابطه روبرو تعریف شده است که اولین بار توسط پلانگ ارایه شد E=c*h/landa=h*frequency که در ان h ثابتی است تجربی که توسط پلانگ اولین بار محاسبه شد فوتون همچنین دارای تکانه زوایه ای اسپینی نیز میباشد که به فرکانس نور وابست نیست و دارای اندازه مجذور 2 ضرب در ثابت h می باشد و دارای فقط دو راستا میباشد که با علامت های منفی و یا مثبت مشخص میشود تائیدی دیگر بر وجود فوتون نمایی از چگونگی انجام آزمایش پدیده کامپتون. آزمایش دیگری که توانست وجود فوتونها را بهصورت تجربی به اثبات رساند، مربوط به آزمایش است که توسط کامپتون انجام شد. این آزمایش که بعدها نام اثر کامپتون را بر خود گرفت، به این صورت بود که تابش الکترومغناطیسی یا فوتونها توسط مواد مختلف پراکنده میشود. به بیان دیگر، در این آزمایش فوتون بعد از تابش مقداری از انرژی خود را به یک الکترون تقریباً آزاد منتقل میکرد و خود با انرژی کمتر در راستای دیگر منحرف میشد. نتایج این آزمایش که با استفاده از مفهوم کوانتومی نور صورت میگرفت، با نتایج تجربی کاملاً تطابق داشت. جرم فوتون در نظریه ذرهای نور، نور از ذراتی بنام فوتون تشکیل شده که با سرعت ۲۹۹،۷۹۲،۴۵۸ متر بر ثانیه یا c در خلا منتشر میشوند.برای هر فوتون اندازه حرکتی (momentum) معادل p = h/λ معرفی شده که در آن h ثابت پلانک و λ طول موج فوتون است. در این نظریه فوتون جرم ندارد و جرم سکون آن صفر است، اما جرم معادل با انرژی آن برابر است: m = E/c2 = hν/c2 = h/λc گلوئون گلوئون (به انگلیسی: Gluon)، ذرهای است که بین کوارکها مبادله میشودتا آنها را به هم پیوند دهد. به این ترتیب گلئونها به طور غیرمستقیم مسئولیت جذبه بین پروتونها و نوترونها در هسته اتم را به عهده میگیرند. گلوئون از کلمه glue به معنای چسب گرفته شده است. به پیشنهاد هیدکی یوکاوا و محاسبات وی در سال ۱۹۳۰ پیون مسئول نیروی قوی در هستهها شناخته شد این نیرو باعث میشود تا نوکلئونها در کنار یکدیگر باقی بمانند اما باریونها خودشان از کوارک تشکیل شدهاند و این کوارکها با میانجیگری گلوئون به هم متصل میشوند[۷] و به این نیرو «نیروی قوی» میگویند.[۸] نیروی قوی مشابه نیروی الکترومغناطیسی است که بین دو ذره باردار به وجود میآید با این تفاوت که فوتون (میانجیگر نیروی الکترومغناطیسی) خود بار الکتریکی ندارد اما گلوئون که میانجیگر نیروی قوی بین دو ذره رنگدار *[۹] است خود دارای رنگ است و به همین دلیل این موضوع وجود دارد که میان دو گلوئون برهمکنش رخ دهد در صورتی که برای فوتونها این چنین نیست. محاسبات بیشتر نشان دادهاست که این برهمکنشها (برهمکنش گلوئون-گلوئون و کوارک-گلوئون) در انرژی بالا سست میشود[۱۰] و به همین دلیل تلاش دانشمندان بر این بودهاست که برای اجسام دماهای بالای از قدر تریلیون درجه سانتیگراد تولید کنند تا گلوئون و کوارک از هم جدا شده و پلاسمای کوارک گلوئون به وجود آید. اگر یک پروتون متحرک باشد نیمی از تکانه آن توسط سه کوارک آن تامین میشود و نیمی دیگر از آن توسط تعداد زیادی گلوئون تامین میشود.[۱۱] این بوزون هشت رنگ دارد که رنگهای آن به صورت زیر هستند: اینها همان ماتریسهای گلمان هستند. بوزون در فیزیک ذرات بوزونها ذرات زیر اتمی هستند که از آمار بوز-اینشتین تبعیت میکنند. بوزونها بر اساس نام ساتیندرا بوز و آلبرت اینشتین نام گذاری شده اند .در مقابل انها فرمیونها هستند که از امار فرمی-دیراک تبعیت میکنند. چندین بوزون میتوانند حالت کوانتومی مشابهی را اشغال کنند، بنا براین بوزون هایی با انرژی یکسان میتوانند مکان مشابهی را در فضا اشغال نمایند. بنابراین بوزونها اغلب ذراتی هستند که حاملین نیرو هستند در حالیکه فرمیونها معمولاً بخش اصلی ماده می باشند . بوزونها ممکن است ساده و مقدماتی باشند مثل فوتون ها یا مرکب باشند مثل مزون ها . همهٔ بوزون ها دارای اسپین صحیح هستند؛ بر خلاف فرمیون ها که دارای اسپین نیمه صحیح هستند .این مطابق است با قضیه اسپین-آمار که به این صورت بیان میشود :در تئوری میدان کوانتوم نسبیتی ذرات با اسپین صحیح بوزون هستند و ذرات با اسپین نیمه صحیح فرمیون هستند. بیشتر بوزونها ذرات مرکب هستند. در مدل استاندارد ۵ بوزون وجود دارد که مقدماتی هستند : ۴ بوزون شاخص (γ • g • W± • Z) ۱ بوزون هیگز (H۰) بوزونهای مرکب در ابر شارگی و بعضی کاربردهای حالت چگالیدهٔ بوز-انیشتین مهم هستند . تعریف و ویژگیهای اساسی بر اساس تعریف، بوزونها ذراتی هستند که از آمار بوز انیشتین تبعیت میکنند. وقتی جای ۲ بوزون با هم عوض میشود، تابع موج سیستم تغییری نمیکند در حالیکه فرمیونها از آمار فرمی-دیراک و اصل طرد پاولی تبعیت میکنند. خصوصیات لیزرها و میزرها(تقویت امواج میکرو ویو)، ابر شاره هلیوم-۴ و حالت چگالیدهٔ بوز-انیشتین، همگی از اثرات بوزونها هستند. نتیجه دیگر این است که اسپکتروم یک فوتونگازی شکل، در تعادل دما، پلانک-اسپکتروم نامیده میشود. مثل تابش جسم سیاه یا تابش زمینه کیهانی. در همه نیروهایی که ما می شناسیم، فعل وانفعالهای بوزونهای مجازی وفرمیونها ی حقیقی تعامل اساسی نامیده میشود. بوزون هایی که در این تعاملها شرکت میکنند، بوزونهای پیمانه ای نامیده میشوند. همهٔ ذرات مقدماتی که ما میشناسیم یا بوزون هستند یا فرمیون، که بنا به اسپین آنها : ذرات با اسپین نیمه صحیح را فرمیون و ذرات با اسپین صحیح بوزونها هستند. در کوانتوم مکانیکی این مشاهده کاملا تجربی است در حالیکه در کوانتوم نسبیتی بنا به قضیه اسپین-آمار، ذرات با اسپین نیمه صحیح نمی توانند بوزون و ذرات با اسپین صحیح نمی توانند فرمیون باشند. در سیستمهای بزرگ تفاوت میان تعداد بوزونها و فرمیونها فقط در غلظتهای بالا معلوم میشود. بوزونهای مقدماتی همه ذرات بنیادی یا بوزون هستند یا فرمیون . بوزونهای ساده یا مقدماتی مشاهده شده، بوزونهای پیمانه ای هستند مثل فوتونها و بوزونهای w ، zو گلوئون . فوتونها حامل نیروی میدان مغناطیسی هستند. بوزون هایz w، حامل نیروهای ضعیف هسته ای هستند. گلوئون حامل نیروی بنیادین (نیروی قوی هسته ای) هستند. در آخر، بسیاری از رویکردهای گرانش کوانتومی نیرویی برای گرانش در نظر می گیرد به نام graviton که یک بوزون با اسپین ۲ است . بوزونهای مرکب ذرات مرکب مثل هسته و اتم می توانند بوزون یا فرمیون باشند، که بستگی به ترکیبات آنها دارد به طور دقیق به دلیل رابطه میان تعداد و اسپین، ذراتی که تعداد زوجی از فرمیونها را حمل میکند یک بوزون هستند تا وقتی که اسپین صحیح دارند . مثالهای دیگر شامل موارد زیر است: یک مزون که شامل ۲ فرمیون کوارک است یک بوزون است. هسته اتم کربن-۱۲ که شامل ۶ پروتون و ۶ نوترون است، یک بوزون است. اتم هلیوم-۴ که تشکیل شده از ۲ پروتون و ۲نوترون و۲ الکترون، یک بوزون است . تعدادی از بوزونها از ذرات مرکب تشکیل شده اند مثلا از ذرات ساده که پتانسیل محدودی دارند و این که یک بوزون باشد یا فرمیون تاثیری ندارد. فِرمیون مدل استاندارد ذرات بنیادی، به همراه فرمیونها در سه ستون اول جدول نامیده شده به اسم فیزیکدان ایتالیایی انریکو فرمی، به ذرات بنیادی با اسپین نیمه گفته میشود. اصولا همه ذرههای اساسی در مکانیک کوانتومی، یا از فرمیونها یا از بوزونها هستند. الکترونها، لپتونها، نیتریونها و حتی کوارکها همگی فرمیون میباشند. به این ترتیب، ذرات تشکیلشده از تعداد فردی از فرمیونها نیز، جزو فرمیونها میشوند. در فیزیک ذرات، فرمیونها ذراتی هستند که ازآمار فرمی–دیراک، تبعیت میکنند که بر اساس نام انریکو فرمی نام گذاری شدهاست . در مقابل آنها، بوزونها از آمار بوز – اینشتین پیروی میکنند . در یک لحظهٔ معین، تنها یک فرمیون میتواند، یک حالت کوانتومی را اشغال کند که این بیان اصل طرد پاولی است . بدین معنی که اگر بیش از یک فرمیون فضای مشابهی را در فضا اشغال کنند، مشخصهٔ هر فرمیون ( برای مثال اسپین )، باید از دیگری متفاوت باشد . ف |